
Fuzzing and Exploit
Development with

Metasploit Framework

Who am I

• Elliott Cutright aka Nullthreat

• Senior Information Security Analyst

• Do not take anything I say as fact. I have
been wrong before and I will be wrong
again.

What is an overflow

• Too much data in a space not designed for
it

• Stack Based (Focus on today)

• Heap Based

• Smashing the stack for fun and profit

• Phrack 49 by Aleph One

What is the Stack

• Holds the functions and function variables

• User Input

• Data needed by the app

• First in, first out

The Stack

The Stack (now with more data)

The Stack (Smashed)

Fuzzing

• Sending random info to the application and
monitor for a crash

• Make the app cry

• GET /AAAAAAAAAAAAAA......

• EIP = 0x41414141

X86 Registers

• EIP - Address of next instruction

• ESP - Address for the top of the stack

• EBP - Stack Base Address

• EAX/ECX/EDX - Holds variables and data
for the application

x86 Registers
• EIP = Instruction Pointer

• ESP = Stack Pointer

• EAX = Accumulator

• EBX = Base Index

• ECX = Counter

• EDX = Data

• ESI = Source Index

• EDI = Destination Index

Lets Break Some Stuff

• DEMO

• Fuzzing

Awesome...wait..what?

• EIP = 0x41414141

• 0x41 = A

• We control EIP, so we can tell the
application what to do

• Now we need to find the location of the
EIP overwrite

Enter Pattern_create()

• MSF Pattern Create creates a easy-to-
predict string to assist with EIP location

• EIP overwritten with pattern and use MSF
Pattern Offset to determine location

Lets Break Some Stuff

• DEMO

• MSF Pattern Create/Offset

EIP Overwrite

• We now know it takes 256 bytes to get to
the EIP over write

• Use this to build out skeleton exploit

Skeleton Exploit

“\x00\x01” - Sets the mode in TFTP

“\x41” * 256 - Sends 256 A’s, overflow buffer

“\x42” * 4 - Sets EIP to 0x42424242

“\x43” * 250 - Sends 250 C’s as fake payload

“\x00” - Ends the packet

Exploit in Metasploit

crash = "\x00\x01"

crash += "\x41" * 256

crash += [target.ret].pack('V')

crash += "\x43" * 250

crash += "\x00"

Lets Break Some Stuff

• DEMO

• Skeleton Exploit

A Closer Look

0x42424242

0x42424242

0x0012FBE0

0x0012FBE0

Find the JMP

• We control EIP and ESP

• The data we want it is ESP

• We want to find a JMP ESP

• This will place us at the start of our
“shellcode”

Finding the JMP

• Ollydbg or ImmunityDBG

• Use the search feature

• Find in application or windows lib

Testing the return

• Use break point at the address

• Make sure we jump to the right spot

Lets Break Some Stuff

• DEMO

• Finding and adding the JMP

• Testing the JMP

Adding the Shellcode

• Metasploit has a large library

• Very easy to add to exploit

• replace “\x43” * 250 with
payload.encoded

• This exploit has small space for shellcode

• For this proof of concept we will launch
calc.exe

Lets Break Some Stuff

• DEMO

• Shellcode and Final Exploit

Buzz Kills

• ASLR - Address Space Layout
Randomization

• Vista and Server ’08 enabled by default

• DEP - Data Execution Prevention

• XP SP2 and newer

• Prevents code execution in non-
executable memory

Resources

• www.nullthreat.net - Slides and demos

• www.offsec.com - Cracking the Perimeter

• www.corelan.be:8800 - Awesome tutorials
on exploit dev

• DHAtEnclaveForensics - Youtube channel

• www.exploit-db.com - take working
exploits apart and re-write them

http://www.nullthreat.net
http://www.nullthreat.net
http://www.offsec.com
http://www.offsec.com
http://www.corelan.be:8800
http://www.corelan.be:8800
http://www.exploit-db.com
http://www.exploit-db.com

Q&A

